大数据的编程语言,大数据的编程语言有哪些
如何选择大数据的编程语言?
当前正处在大数据时代背景下,大数据技术目前也正处在落地应用的初期,未来大数据的发展空间还是比较大的,所以学习大数据相关技术是个不错的选择。
大数据编程语言的选择要根据具体的工作岗位来进行,目前大数据领域的工作岗位包括大数据平台研发、大数据应用开发、大数据分析和大数据运维,除了大数据平台研发之外,其他岗位的人才需求量还是比较大的,尤其是大数据分析岗位。
大数据应用开发岗位比较常见的编程语言包括Java、Python、Scala等,J***a和Python是Hadoop平台比较常见的编程语言,而在Spark平台下,往往更多的选择是Scala语言。从应用的普遍性和功能性来说,在Hadoop平台下比较推荐***用J***a语言,在Spark平台下比较推荐***用Scala语言。J***a语言的生态比较健全,而且性能稳定,所以***用J***a语言会降低一定的开发风险。
大数据分析岗位比较常见的编程语言包括Python、R、Julia、Matlab、GO等语言,其中Python和R语言是比较常见的选择。Python语言随着大数据的发展,在近几年上升势头非常明显,在最新的TIOBE语言排行榜上已经排到了第三位,这是一个非常不错的成绩。Python语言语法简单、扩展性强、调整方便,而且Python语言自身具备强大的库支持(Numpy、Scipy、Matplotlib等),在进行数据分析时非常方便。
另外,Python语言也是大数据运维岗位比较常见的选择,从这个角度来看,Python语言是大数据从业人员应该掌握的重点语言。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续在头条写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
选择大数据项目编程语言的最重要因素是目究竟项目偏向于什么。如果是更加侧重于分析数据,构建分析并测试机器学习模型,那么更偏向于数据科学语言。如果是希望构建大数据或物联网(IoT)应用程序,那么选择又需要考虑其他因素.
在数据科学探索和开发阶段,今天最流行的语言无疑是Python。Python流行的一个重要原因是可用于帮助数据科学家探索大数据集的大量工具和库。另外Python本身就是一门通用语言,实用型强.
另一种流行的数据科学语言是R,长期以来一直是数学家,统计学家和科学家的最爱。MATLAB也广泛用于大数据的探索和发现阶段。另外如果不了解SQL,也无法在数据科学方面走得太远,这仍然是一种非常有用的语言。
在开发生产分析和物联网应用程序时,通常会选择不同的语言集。虽然可能在项目的实验阶段选择Python或R,但实施通常会重写应用程序并使用完全不同的语言重新实现机器学习算法。
J***a仍然是一个非常受欢迎的选择,因为世界上有大量的J***a开发人员,以及一些流行的框架,如Apache Hadoop,是用J***a开发的。Scala在J***a虚拟机(JVM)中运行,也广泛用于数据科学; Apache Spark是用Scala编写的,Apache Flink是用J***a和Scala编写的。但是,[_a***_]某些生产应用程序,开发人员仍然倾向于低级语言。当速度和延迟很重要时,许多开发人员转向使用C和C ++来获得他们想要的东西。
使用C / C ++这样的低级语言可以比使用自动内存管理的语言更严格地控制应用程序的内存和性能.一个编写良好的C ++程序,对内存访问模式和机器的体系结构有深入的了解,可以比依赖于垃圾收集的J***a程序快几倍。出于这些原因,许多具有巨大可伸缩性和性能要求的企业开发人员倾向于在其服务器应用程序中使用C / C ++而不是J***a。
总之,究竟选择何种大数据相关编程语言,还是要根据具体目标选择.对于性能有着苛刻的要求,就偏向于低级语言.如果偏向于数据分析和探索Python和R比较适合。J***a以其强大的生态和不错的性能,也是一个可能的选择.
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.wnpsw.com/post/12429.html