r语言做词云图代码
数据分析需要用什么技术?java还python好一点?
对于小中型数据一般通过Python就可以完成数据分析,对于大数据的数据分析需要使用分布式数据存储和计算技术,一些常用的工具,hadoop,hive,spark,flink等。
掌握数据可视化工具使用,可以帮助我们快速了解业务数据,比如pyecharts,seaborn,plotly,matplotlib等
在进行python数据分析时候,可以借助一些工具库快速完成,比如pandas,numpy
一般公司中多用python来进行数据分析,毕竟数据科学狠多插件都非常的好用,希望对你有帮助,让我们共同进步。
先说结论,
问题1回答:数据分析技术简单来说可归类为统计分析技术和数据可视化两类。
问题2回答:目前阶段做数据分析使用Python更高效,方便一点。
希望我作为数据分析师的经验能对你有帮助
数据分析是指用适当的统计方法对收集的大量数据进行数据分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,最后再通过得到的结论应用到行业中解决实际问题。
简单概括来说数据分析就是-- 处理数据然后推进优化现实工作。
数据分析应用在各行各业,互联网,工业,咨询行业等,有一个共同点,数据分析都是为业务服务的,用于解决实际运营中出来的问题,或者探索业务可优化的空间。
明白了这一点,就知道数据分析不是目的,数据分析的结果产出对业务的实际提升和优化才是目的,数据分析只是一种解决的方法,既然是方法,我们就要考虑它的效果,成本(学习成本,使用成本)等。
以现在最热门的互联网行业的数据分析而言,随便从招聘网站上截取部分应届生数据分析师招聘JD,选取应届生是因为相对要求低一点,对题主想要入门应该更有参考下价值。
其实我觉得大家可以想像数据分析的目的是要数据的结果,为啥 要用一门语言 去创造这个分析的过程呢? 为啥不用相对高级一点的工具来做处理呢?
这里我推荐两款工具,一款是字节跳动的 数据洞察,一款是软开企服的JVS数据智仓
我们先看下字节跳动的 数据洞察:
我们 在对比下JVS数据智仓
这是一个非常好的问题,作为一名IT从业者,我来回答一下。
首先,随着大数据技术的落地应用,数据分析作为大数据的常见任务会逐渐增多,未来不仅IT(互联网)行业会需要进行大量的数据分析,传统行业领域也会逐渐释放出大量的数据分析任务。
从当前的技术体系来看,目前常见的数据分析方式有两种,一种是统计学方式,另一种是机器学习方式,而无论***用哪种数据分析方式,通常都离不开程序设计。当前在生产环境下,数据分析任务通常都基于平台来展开,比如Hadoop、Spark就是比较常见的数据分析平台。
在Hadoop和Spark平台下,***用Java和Python都可以,同时也可以***用Scala和R等编程语言,[_a***_]人员可以根据自身的知识结构来选择具体的编程语言,而对于初学者来说,当前学习Python语言是不错的选择。
***用Python进行数据分析有三方面好处,其一是Python语言自身比较简单易学,初学者很容易上手;其二是Python语言有众多的库可以使用,比如Numpy、Matplotlib、Pandas等,这些库对于提升Python数据分析能力有非常直接的帮助;其三是Python语言本身就是一门全场景编程语言,具有较强的落地应用能力。
从当前的使用情况来看,在数据分析领域,Python语言的上升趋势还是比较明显的,而且数据分析人员也比较愿意使用Python,与J***a语言主要应用在IT(互联网)行业不同,Python语言在传统行业的应用也比较普遍。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
j***a和Python都可以用于数据分析,但是Python在数据科学和机器学习领域更受欢迎。
Python拥有丰富的数据分析库和工具,如NumPy、Pandas、Matplotlib、Scikit-learn等,这些库可以帮助数据分析人员进行数据处理、可视化、建模和预测等任务。此外,Python还有许多流行的深度学习框架,如TensorFlow和PyTorch,可以用于构建和训练神经网络模型。
J***a也有一些数据分析库和工具,如Apache Hadoop、Apache Spark等,但是相比Python,J***a的数据分析生态系统相对较小,使用J***a进行数据分析需要更多的编程工作和代码量。
因此,如果你想从事数据分析或机器学习方面的工作,建议学习Python。但是如果你已经熟悉J***a并且对数据分析有兴趣,也可以使用J***a进行数据分析。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.wnpsw.com/post/23028.html